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ON THE ST~ILITY OF POINTS OF LIBATION 
OF AN INHOMO~ENEOUS TRIAXIAL ELLIPSOID* 

1.1. KOSENKO 

A uniformly rotating inhomogeneous gravitating ellipsoid is considered. 
On every ellipsoidal surface the density is constant. A material particle 
can move freely in the space filled by the gravitating mass. Existence 
conditions for relative equilibria are stated, and their stability is 
studied. The results are interpreted from the view-point of stellar 
system dynamics. 

1. The existence of equilibria. The gravitating ellipsoid has semi-axes sl,a,,a, 
and rotates with constant angular velocity o about one axis (a& Unlike fl/, it is assumed 
to be inhomogeneous. The density is distributed ellipsoidally, being constant on every 
similar ellipsoidal surface. The origin of the coordinate system r1 (i = 1, 2, 3), which 
rotates with the ellipsoid, is located at its centre, while the coordinate axes are along the 
semi-axes '~(i = 1,2,3) respectively. 

Taking l = (al" + up $- a,*)"* and T = l/o as the characteristic dimension and time, we 
change to new (dimensionless) variables by the relations a+ = E%,(i = 1,2,3), d = Tz. The 
equations of motion of a passive particle have the Hamiltonian form 

F=H,,, q.=-r&; %,qeR* (1.1) 

The function 6, characterizes the density on an ellipsoidal layer, f is the gravitational 
constant, and m is the total mass of the ellipsoid. As a passive particle we can imagine a 
star inside an elliptic galaxy. 

We find the equilibrium positions from the conditions: H;=H,=O. 
In more detail: 

HL=--n2-AE,=0, H,=ql-AnE.=O, Hir=-An,=0 

~~,,=r)li_%n=4a,=Plr-_B=OI r&,=%=0 

1n configuration space we obtain the system of equations 

L + AtI = %a + 4n = 4a = 0 

If a weak condition such as 
inclusion /2/ AE C' (R8\ (0)). 

7~ &(R+) is imposed on the mass distribution, we have the 
We can therefore calculate explicitly the derivatives Aki = 

--2&Ft (%), where 

The equations of equilibrium take the form 

%1 (1 - 2PPJ (%)) = 0 (i = 1, 2), %*PF, (f) = 0 (1.3) 

We shall consider various cases when these equations are solvable. 
If %8"+Oo, then F,(r)- 0. Since the integrand is non-negative, we must have 
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y 1~ (u, %“)I c 0 for u ;= R, almost everywhere. Hence v (IL) : 0 almost everywhere for 
IO, p (0, E)]. This means that the ellipsoid p (0, g) p (0, E) 

!" 

is a bounded domain in K:',filled 
by a vacuum. This domain cannot be extended without limit, since the total mass of the 

ellipsoid is certainly non-zero. 
Inside the domain y [r_l (u, E)] == 0, so that Fi (E) = 0. From this and (1.3) we have 5, = 

EZ = 0, i.e., the equilibria cannot be isolated but must fill a piece of the axis of revolution 
lying in a cavity. 

In stellar dynamics, ellipsoidal objects with a vacuum in the central domain are of no 
interest. We shall therefore consider henceforth points of libration which do not lie on the 
axis of revolution. From (1.3) we immediately obtain E," = 0, and all the singular points, if 
there are such, lie in the equatorial plane. 

If 1 - 2pF, (E")# 0, then Ei = 0 (i = 1, 2, 3) must be the centre of the ellipsoid. 
There remains the possibility 1 - 2pFi (E") = 0. 'i'hen, 1 - 2pFj(g')# 0 (j # i), if a, # a2. 

Otherwise we must have ctl = czz and the ellipsoid is a spheroid, while the equilibria fill a 
circle. 

In any case it suffices to confine ourselves to i = 1. Ry symmetry, the case i = 2 is 
considered in the same way. If 1 - 2pF,(E") = 0,, then from (1.3) we must have &11 = 0. Hence 
the equilibrium position is on the E, axis and the problem of finding the points of libration 

reduces to seeking the solutions of the equation 

f (E,) = 1 - 2PF, (51, 0, 0) = 0 (1.4) 

Whether there are roots, and if so, how many, depends on the function y as well as on 

the parameter values. In the case of actual elliptic galaxies, y can be taken to be a 

continuous monotonically decreasing function. 

Theorem 1. 
as the argument 

are 

If the density y E L, (R,) is defined everywhere in R, and does not increase 

increases, the necessary conditions for the existence of points of libration 

1 - 2PY (Oi-)A,< 0 

y(O +)= lim VW, 
IL-o+ 

Ai- (ai+$q(U) (i=lT2,3) 
0 

Here we have the alternative: 

lo. Equilibrium exists and is unique only when 

I- 2py(oi)q,<o 

20. If the equilibrium is not unique, it is not isolated. The solutions of Eq.(1.4) 

fill a piece of the g, axis, adjacent to the origin, while the density is constant on the 

family of ellipsoidal surfaces which pass through the piece. 

Proof. At zero, the function f has the right-hand limit f(&)-l- $7 (0 +)A,, &+O +. 
For, inasmuch as y is defined and monotonic inR+, it has a right-hand limit at zero. 

Hence, given any sufficiently small e>O, there exists 6>0 such that, for 1 ~12/a, 1 < 6 we 

have y (0 +) - e < Y Wad < Y (0 +). Since y is monotonic, for uER+ we also have Y(O+)--< 

y [&2/(~, + U)] < y (o + ), whence we obtain Iv (0 +) - ~1 AI < FI (&I, 0, 0) d Y (0 +) A,. Hence the limit F, (El, 

O,O)- y(O+)A, r :I-* 0 + exists. 

Again, since y is monotonic, f is also monotonic. It follows from /2/ that f(E,) is 

continuous for Er E (0, + co). Moreover, f(%,)+ 1, %,+ + co. 
For, y satisfies the condition, given among relations (l.l), for the mass to be finite. 

For points on the 5, axis, this condition can be written as 

where cl> 0 is a constant. Since, as u++m, the limit (aa + ~)(a, + ~)/(a, + u)'--t 1 

exists, we can choose a constant cz such that [(c+ + ~)(a, + u)]-'/* < c2 /(a, + U) for all u E R,. 
Thus we finally have 1 F, (E,, 0, 0) 1 .< ~c,c,/(~&~)-F 0 , E1 + + 00. 
In short, if there is equilibrium at El"> 0, then we must have f (0 + )<O. The first 

part of the theorem is proved. 
Further, if the non-zero solution of (1.4) is unique, we must have f (0 + )< 0. For, if 

f (0 +) = 0, then by the monotonicity we have f(&) ='O for all &E (0, El'), which contradicts 

the uniqueness. 
Conversely, let f (0 +)cO and at the same time let the uniqueness be violated, i.e., 

with El', f," > 0, E,' < El", we have f (%,‘) = f (El”) = 0. Then, F, (%1”, 0, 0) - F, (&', 0, 0) = 0. 
Since y [(%1")"/(~1 + u)] d y [(%,')'/(a, -i- u)l, because y is monotonic, then for all u e R, we 
must have 

(1.5) 
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It can be shown that y(p)= coast for I, < (&")z/~,. 
We define u1 from the equation (%;)Y(u, $ ul) = (%l')aia,. We obtain uI = OL, l(Et"i%,')* - 11 = a> 0. 
We assume inductively that, for U& (kc n) which satisfy the equation 

(L")*~I+ :jjL=:+ ~x)“=irr.)~(a~+~~:u~)-' 

we have ~k>,a. This is also true for u~+~, since 

Eence the series u1-k us-f-... is divergent, so that it can be shown that y is constant. 
For, y [(%~")~/(a~ + zQ] = ~[(%;)VaJ = y [(%z")~/~,]r and since y is monotonic, throughout the interval 
[O, all , with IS E [O, c+), we have 

y I(C" + U)l = y [(%l")*ia,l = const 

Using identity (1.5), the function on the left-hand side of (1.5) can be continued 
continuously from [O,nJ into (O,u,$- ~1, and so on, into any interval [O, Q-k u, + . . . -i- un]. 
Since the upper limit is the partial sum of a divergent series, continuation is admissible 
into the entire semi-infinite interval P, c -1. 

Hence y(p) = con& = ~(0 +) for ~~((o,(~l")*/~l]. Hence f (&“) = f (0 -j-f = 0, which contradicts 
our assumption. Consequently, there must only be one point of libration. 

It is also clear from our proof that, when the uniqueness is violated, the equilibrium 
positions fill the interval [O,(&")*/oc,] of the E1 axis, while the density is constant in the 
relevant family of ellipsoids. The theorem is proved. 

2. Stability. By analogy with /l/, we pass to local coordinates by the canonical 
transformation (g,q)‘c fq,p) with the aid of the generating function 
where (E”, rl’) = (El’, 0, 0, 0, El', 0) 

w (E, P) = (6 - Yp, p + q”f, 
is the position of equilibrium of the Hamiltonian system, 

if it exists, corresponding to the point of libration. The transformation relations are 
q - iv&?= g-go, ‘1= w, ==p +$. 

The hamiltonian function can be expanded in a power series in the neighbourhood of the 
equilibrium position (if the density has the required smoothness) 

where Hk are homogeneous forms of the phase variables of degree k, and & are homogeneous 
forms of the coordinates in the expansion of the potential in the neighbourhood of % = go 12/. 

As a point of libration I& depends only on the squares of Et (i = 1,2,3). In accordance 
with /2/, 

kc = 2P ((PP + ‘ps -I- cplt &A* = --2P% A,, = -2p(p, 

tpi = Fi (1”) (i = 1, 2, 3), rp = -2y [(F;lo)'la,Il(a,a,a,)'/t 

From equilibrium condition (1.4) we have 2p = llcp,. In accordance with /2/, these 
pressions can be used if the function y is assumed to be continuous on the ellipsoidal 
which covers the point of libration. 

The form of lowest order in the expansions of N is 

nl(P"P)=~~~aa+3paa+~p,a+~~~~--~~-q~~~ai.~q4a -+zq*a 

and the characteristic equation of the first approximation system is 

Ih' + (2 - h) ha + (1 + g + h) (1 - g)l (a2 -i- Q,/Q,) = 0 

tg = QdQ,, h = (Q* + QVQ,) 

ex- 
layer 

With respect to space coordinate 
(QdQ#** 

f~ a,the star performs normal oscillations with frequency 
hence it suffices to study the stability in the first approximation for motions in 

the equatorial plane. 
The equations of the first approximation of plane motion i = IG., where z = (q,,qal pz,pa) 

and I is a simplectic matrix of fourth order, have the Hamiltonian G(z) = H, (ql, qi, 0, pltp2, 0). 
In the sapce of parameters h and g, the set S of points for which the necessary conditions 
of stability of the linear system hold, is obtained from the condition for the real part of 
the roots of the characteristic equation to vanish. It is given by the inequalities (Fig.11 

g> 0, h 6 2, (67 -t- h/z)a - 2h>, 0, (1 -t" g -I- h) (1 - 8) 2 0 

As distinct from the case of an external point of libration of a homogeneous ellipsoid 
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/l/, here the constraint h>O is not present. 
In the inhomoqeneous case, h may be influenced 
by the value of the density at the point itself. 

The stability conditions of the linear 

1 
system become sufficient if the matrix iGm is 
reduced to diagonal form by a suitable linear 
substitution. In particular, this is true in the 
domain I&S, where the roots of the characteristic 
equation are pure imaginary, distinct, and not 
equal to zero. 

The set Rs (I, s) = {(h, g): (1 -i- g f h) 11 - &'I = 

Fig.1 0, h,( 2, g>o}C 8s (curve 1) corresponds to 
first-order resonance (one of the frequencies is 
zero). A check shows that, for all (h,g)f Rs(1, 

S), with the exception of {h, g) - (-2,1), th e elementary divisor corresponding to the zero 
eigepvalue of the matrix lGm is not simple. Hence, for (h,g)== (-2,1), the equilibrium 
in the linear approximation is stable, while for (h,g)~ Rs (1, S)\ {t--2, 1)} it is unstable. 

It remains to consider the set Rs(2, S) = ((h, g): (g + h1’2)~ - 2h = O,O<h<2f (curve 2) 
of second-order resonance. It can be shown that in this case the minorM%,of the matrix 
JG,,- i(1 -h712)E (obtained by striking out the first row and fourth column) is zero only 
when h= ii and h= 2. Hence, with (h, g)E Rs (2, S), the eigenvalue i (1 -h/2) has a non- 
simple elementary divisor. Hence the instability follows. 

To sum up, stability is ensured in the first approximation only when (h,g)E IntS U {(- 
2, Q). Notice also that, with (h, g)E IntS n {(h,g): h< - 2) = So, the function G(z) is 
positive definite by Sylvester's criterion. Hence with (h,g)E S,, the function H,(q,p) is 
also positive definite, and since H = Hz I-. , . is the integral of the exact non-linear 
system, then S, corresponds, by Lyapunov's celebrated theorem, to its stable equilibrium 
position. 

3. Discussion. From the point of view of stellar system dynamics, a case of special 
interest is that when the function y is decreasing and reaches a maximum at zero (the centre 
of the galaxy). It was remarked in /3/ that A,+A~~A~=~~(cQ~c+J~~. In the case of a non- 
increasing function y: R+-.R,, which occurs for observed elliptic galaxies, ei > Y [(&Ws~l Ai fi = 
i,2,3),where we have the exact equality when the equilibria position is not unique and the 
points of libration fill the interval [O,V] of the & axis, while the density is constant on 
the appropriate ellipsoids. 

Consequently,whenthedensitydoes not increase onleavingthe centre, we have the inequality 
'p, + (pa + cps > ZyI(glo)2/a,jl(a,~q)"~ = -cp, which is equivalent to 1 i_ g + h > 0 (Fig.1). Hence points 
of the domain S, cannot correspond to a decreasing function y. 

It is clear from this that stability only occurs in this case when g<i, i.e., when 

a,<%. The conclusions of /l, 3/ extend to the inhomogeneous case: if an isolated point of 
libration is stable, it is located on the continuation of the lesser equatorial semi-axis. 

After studying the stability in the first approximation, we can perform a non-linear 
analysis for the set of parameters S n ((h,g): 1 +g + h>O}, in the same way as was done in /4/, 
Clearly, in plane motion we have stability everywhere in IntS \ s,, with the possible exception 
of some resonance curves (the Arnold-Moser theorem). With respect to spatial motions we can 
speak in this case of stability for the majority of initial conditions. 

An unisolated equilibrium position with g#i(ut+c+) is realized only when 1 -+-g+~~ -0. 
One characteristic exponent is zero. The elementary divisor corresponding to it is not simple. 
The instability consits of a systematic shift along the EL axis at a constant rate which 
increases linearly as the distance from this axis increases. The explicit solution is easily 
obtained by considering the motion of the star within a homogeneous ellipsoid, in the same 
way as in /5/. The homogeneity follows from Theorem 1 and the fact of non-isolation. The 
ellipsoids considered in /5/ were those in which the positions of relative equilibrium fill 
an interval of the EL axis. Notice that, in the case when 1+ gi_h==O, the Hamilton system 
is linear: HI% P) = H, (9, P). 

If g= 1, the points of libration are likewise not isolated, but they fill a circle in 
the plane of the equator. The galaxy has the form of a spheroid. It was pointed out in /4/ 
that here also, in the general case, we have instability for the non-linear system, due to 
the systematic shift along a longitude. 

The author thanks V.G. Demin for suggesting the problem and for his interest. 
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THE DYNAMICS OF A RIGID BODY UNDER IMPACT* 

V.A. SINITSYN 

The motion of an absolutely rigid body under impact (impulsive motion) is 
considered. The analogy between this motion and the motion of a rigid 
body in a fluid is pointed out: the influence of the inertial properties 
of the body on the motion is defined in both cases by three second-order 
surfaces. The role of these surfaces when a body moves in infinite fluid 
was established by Ehukovskii /l/. Using the moments of the impact pulses 
at the point of contact (the influence of rolling friction and revolving 
friction), the necessary conditions are obtained for the appearance of 
"tangential*' impact (TI). A well-known characteristic of TI is that the 
reaction assists in increasing the approach velocity of the points of 
contact of the colliding bodies, including the case when the initial 
approach velocity is zero ("collision without impact"). Previously /2-4/ 
studies of TI have only taken account of the impact pulse (the normal 
component of the reaction and sliding friction). The physical meaning 
of TI has been elucidated in a discussion of the "paradoxes" of dry 
friction, see 15, Appendix 2/, and in the popular literature /6/. In 
working devices TI often makes its appearance as dynamic selfbraking, 
and as unwanted cases of "sticking" and "seizing." 

We consider the motion of a rigid body which belongs to a system with ideal constraining 
links, linear with respect to the velocities (holonomic or non-holonomic). Let the impact 
action on the body be specified as a principal vector S and principal momentum L of the 
impact force momenta, reduced to some centre. As usual in the case of impact, we neglect 
displacements of the material particles of the system. As the basic coordinate system we 
take a fixed system whose origin coincides with the centre of reduction of the impact force 
momenta. Determination of the motion of the rigid body under impact amounts to finding the 
angular velocity 0: of the body and the velocity v of some pole. 

As the pole we take the point Oaf the body which coincides with the origin of the basic 
coordinate system (the position of the pole remains fixed during the impact, while its 
velocity varies from some value v- befoxe impact). We write the equations of the impulsive 
motion of the body (motion under impact) /7/ 

Here, Vtt Wit sr, Lf 0 = 1, 2, 3) are the projections of the vectors v,o,S,L on the axes 
of the fixed coordinate system. The coefficients of the matrices w,, $,Y are found by means 
of expressions for the kinetic energy Q of the reduced system (a quadratic form in the kinetic 


